Pagina iniziale | Navigazione |
Google

Distanza

      

La distanza tra due punti è la misura (lunghezza) di una linea retta che li congiunge. Nel caso di due luoghi sulla Terra, prende il significato di distanza "in linea d'aria" o di lunghezza del percorso (stradale, ferroviario, ecc.) che li congiunge. La distanza viene talvolta espressa in termini di tempo impiegato per coprirla (di solito specificando il mezzo di trasporto). Nell'accezione quotidiana, la distanza non è una misura simmetrica. Se pensiamo a un percorso stradale ad esempio, la strada potrebbe essere a senso unico e quindi il percorso da A a B risulta diverso da quello per andare da B ad A. Anche nel caso in cui la distanza viene espressa in termini di tempo di percorrenza, la simmetria si perde perchè in traffico può essere maggiore in un senso piuttosto che nell'altro. Contrariamente alle coordinate di una posizione, una distanza non può avere un valore negativo.

La distanza in matematica

In matematica la distanza è una funzione che possiede tre proprietà fondamentali: Data una funzione chiamatà d e gli elementi x,y,z si definisce d una funzione distanza se possiede le seguenti proprietà:

La formula della distanza

La distanza, d, tra due coordinate cartesiane è pari alla
radice quadrata del quadrato della differenza orizontale (tra i due punti) più il quadrato della differenza verticale:

Per tre punti:

Nota:

Questa formula della distanza può essere espansa nella formula lunghezza d'arco.

In uno Spazio euclideo Rn, si può definire la distanza tra due punti nel seguente modo, dati due punti (x1, x2, ... ,xn) e (y1, y2, ... ,\yn):

La denominazione 2-distanza corrisponde a una generalizzazione del teorema di Pitagora in uno spazio a n dimensioni. E' la distanza più intuitiva.

GNU Fdl - it.Wikipedia.org




Google | 

Enciclopedia |  La Divina Commedia di Dante |  Mappa | : A |  B |  C |  D |  E |  F |  G |  H |  I |  J |  K |  L |  M |  N |  O |  P |  Q |  R |  S |  T |  U |  V |  W |  X |  Y |  Z |